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The impact of variable material properties, such as temperature-dependent thermal conductivity and dynamical vis-

cosity, on the dynamics of a fully compressible turbulent convection flow beyond the anelastic limit are studied in the

present work by two series of three-dimensional direct numerical simulations in a layer of aspect ratio 4 with periodic

boundary conditions in both horizontal directions. One simulation series is for a weakly stratified adiabatic background,

one for a strongly stratified one. The Rayleigh number is 105 and the Prandtl number is 0.7 throughout this study. The

temperature dependence of material parameters is imposed as a power law with an exponent β . It generates a su-

peradiabaticity ε(z) that varies across the convection layer. Central statistical quantities of the flow, such as the mean

superadiabatic temperature, temperature and density fluctuations, or turbulent Mach numbers are compared in the form

of horizontal plane-time averaged profiles. It is found that the additional material parameter dependence causes sys-

tematic quantitative changes of all these quantities, but no qualitative ones. A growing temperature power law exponent

β also enhances the turbulent momentum transfer in the weak stratification case by 40%, it reduces the turbulent heat

transfer by up to 50% in the strong stratification case.

I. INTRODUCTION

Turbulent convection which is driven by buoyancy forces

occurs in many natural atmospheric and geophysical flows.1

The Rayleigh-Bénard convection (RBC) case has been con-

sidered as one canonical flow setup to study such convection

systems.2–4 In this configuration consisting of a plane layer

of height H, the bottom boundary is kept at a higher uniform

temperature compared to the top boundary; a negative temper-

ature gradient is thus imposed along the direction correspond-

ing to gravity acceleration which is the z-direction. RBC flows

satisfy the Oberbeck-Boussinesq (OB) approximation where a

linear density dependence is included for the buoyancy term

on the right hand side of the momentum balance only. The

flow is incompressible. Both simplifications result in a per-

fect statistical top-bottom reflection symmetry with respect to

the midplane at z = H/2. In other words, the mean tempera-

ture in the bulk of the layer equals exactly the arithmetic mean

of the top and bottom temperature.

In many practical situations, the OB approximation is vi-

olated which results in the breaking of the top-bottom sym-

metry with respect to the midplane. These flows are com-

monly termed as non-Oberbeck-Boussinesq (NOB) flows.

NOB effects appear due to various reasons: (N1) heights of

the convection layer are larger than the corresponding scale

heights5, (N2) additional physics such as phase changes in the

atmosphere6–8, or (N3) dependencies of material properties,

such as dynamic viscosity µ(T, p) and thermal conductivity

k(T, p), on temperature and pressure9–13 Reason (N1) for a

departure from the OB approximations is connected to com-

pressibility effects14–17 as observed for example in giant gas

planets18,19, planetary mantles20 and in solar convection close

to the surface5.

In order to focus on genuine effects due to compressibil-

ity and to disentangle the former effect from reason (N2), it

has been common in parts of the literature to assume constant

material properties, see e.g. Verhoeven et al.15 and Jones et

al.21 for comparisons of the fully compressible case with the

anleastic limit or Alboussière et al.22 for the limit of very

large Pr. Panickacheril and Schumacher16,17 studied differ-

ent regimes of compressible convection under constant ma-

terial properties which generated in parts highly asymmetric

flow cases. NOB effects due to variable material properties

in RBC have been studied in direct numerical simulations23,24

and in controlled laboratory experiments.13,25 They become

relevant when high-Prandtl-number working fluids, such as

oils, are used or when the experiments have to be operated

close to the critical line in the pressure-temperature plane at

very high Rayleigh numbers. Shcheritsa et al.26 and Pandey

et al.11,12 focused on temperature-dependent thermal conduc-

tivity at Pr = 1 and at Pr ≪ 1, respectively. In both works,

it was shown that the variable thermal conductivity (at con-

stant viscosity) resulted already in a significant asymmetry of

the mean temperature profile across the turbulent convection

layer. Both studies were inspired by the solar convection case.

In the present work, we combine the non-Boussinesq ef-

fects N1 and N3 and study fully compressible turbulent con-

vection with temperature-dependent material properties thus

extending our previous works in refs.16,17. To this end, we in-

troduce a power law dependence k(T )∼ T β and choose µ(T )
such that the Prandtl number Pr remains a constant across the

convection layer. This is still a simplification in comparison to

astrophysical setups where the Prandtl number itself is a func-

tion of height, Pr = f (z), but it includes one additional phys-

ical aspect that is common to these flows, a height-dependent

superadiabaticity (which will be detailed in the next subsec-
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tion). To this end, we present 2 series of three-dimensional

direct numerical simulations (DNS) at differently strong de-

grees of stratification and vary the exponent β from 0 to 4.0

in case of a dissipation number D = 0.1 and from 0 to 0.175

for D = 0.8. The series at (D,εglobal) = (0.1,0.1) stands for

the weakly stratified case and was denoted to as OB-like com-

pressible convection.16 The series at (D,εglobal) = (0.8,0.1) is

strongly stratified convection (SSC).16 We study the variation

of essential turbulence profiles across the layer with respect to

the power law exponent β .

All simulations in this study will be conducted at a mod-

erate Rayleigh number of Ra ≈ 105 and at a Prandtl number

Pr = 0.7. This implies that thermal conductivity and dynamic

viscosity will vary in the same way across the layer. This

is different to previous studies by Pandey et al.11 Our work

reports the dependence of mean temperature and density pro-

files on the exponent β . Emphasis is also given to the specific

entropy and the variation of its mean profile with respect to

height. We will show that this quantity can be straightfor-

wardly connected to the local stability properties in our con-

vection system. Furthermore, we analyse the turbulent heat

transfer as a function of β .

The outline of the manuscript is as follows. In Sec. II,

we introduce parameters of the compressible convection flow,

and discuss the adiabatic and diffusive equilibrium configu-

rations at constant material properties to keep the manuscript

self-contained. Section III presents the flow equations and the

numerical simulation method. Section IV specifies the height-

dependent superadiabaticity for varying material parameters.

Subsequent Sec. V present the results. The manuscript ends

with a summary and outlook in Sec. VI.

II. PARAMETERS AND EQUILIBRIA

An infinitely extended convection layer is governed by two

dimensionless parameters, the Rayleigh number Ra and the

Prandtl number Pr

Ra = α∆T
gH3

νκ
and Pr =

ν

κ
. (1)

Here α , g, ∆T , ν = µ/ρ , and κ = k/(Cpρ) are the thermal ex-

pansion coefficient, acceleration due to gravity, outer tempera-

ture difference across the layer, kinematic viscosity, and ther-

mal diffusivity respectively. The definition of the Rayleigh

number is the one that is typically used in the OB case. It

has to be adapted for the present configuration as we will see

further below.

Compressibility introduces two further independent dimen-

sionless parameters. The first parameter, which is a measure

of the degree of stratification in compressible convection, is

the dissipation number D defined as

D =
gH

CpTB

. (2)

Here Cp and TB are the specific heat at constant pressure and

the prescribed temperature at the bottom plate, respectively.

This corresponds to the temperature gradient of the system

when a purely adiabatic process is present. The adiabatic state

is obtained from the hydrostatic equilibrium condition for the

pressure field P,

dPa

dz
=−gρa , (3)

together with the equation of state for an ideal gas (R is the

gas constant),

Pa = ρaRTa . (4)

The subscript “a" indicates the adiabatic equilibrium state.

We also use the isentropic relations between the thermody-

namics variables, Pa/PB = (ρa/ρB)
γ where γ = Cp/Cv is the

ratio of specific heat at constant pressure, Cp, and volume, Cv,

respectively. The resulting adiabatic equilibrium profiles de-

pend on the vertical coordinate z only and are given by

T a(z) = TB

(

1−D
z

H

)

, (5)

ρa(z) = ρB

(

1−D
z

H

)m

, (6)

Pa(z) = PB

(

1−D
z

H

)m+1

, (7)

for 0 ≤ z ≤ H. In the equations, m = 1/(γ − 1). Note that the

bottom values of all three thermodynamic state variables are

the corresponding reference values in the following. Thus the

dry adiabatic lapse rate is consequently given by

dT a

dz
=−

g

cp

. (8)

One also observes that the dissipation number, D =
gH/CpTB = [T a (H)−TB]/TB which defines the temperature

drop across the layer during an adiabatic or isentropic process.

Furthermore, we underline that the adiabatic equilibrium pro-

file is independent of the variation of the material parameters

with temperature or pressure.

For the linear instability to grow and for fluid motion to

occur, the imposed temperature at the top plate must be lower

than that corresponding to a pure adiabatic process, T (H) <
T a(H). In other words, the actual gradient should exceed the

adiabatic one.27 Thus, the other compressibility parameter is

the superadiabaticity, εglobal, defined as

εglobal =
T a(H)−T(H)

TB

=
T a(H)−TT

TB

, (9)

where TT = T (H) is the prescribed temperature at the top

boundary. The superadiabaticity εglobal represents the excess

temperature gradient from the adiabatic gradient quantified by

the parameter D. A more general definition for superadia-

baticity following ref.21 can be given as follows,

ε (z) =−
H

TB

dT (z)

dz
−D . (10)
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Rasa D β Re NuB NuT ε(0) ε(H) εglobal Rε

105 0.1 0 70.5 4.13 4.1 0.1 0.1 0.1 0

105 0.1 0.05 70.1 4.05 4.01 0.099 0.101 0.1 0.022

105 0.1 0.1 71 4.17 4.11 0.098 0.102 0.1 0.044

105 0.1 0.5 74.6 4.4 4.02 0.09 0.112 0.1 0.223

105 0.1 1.0 77.3 4.8 4.01 0.08 0.125 0.1 0.449

105 0.1 1.5 82 5.1 3.9 0.07 0.139 0.1 0.678

105 0.1 3.0 93.6 6.8 3.8 0.04 0.188 0.1 1.403

105 0.1 4.0 100.7 8.8 3.8 0.03 0.228 0.1 1.932

105 0.8 0.0 61 2.8 2.7 0.1 0.1 0.1 0

105 0.8 0.05 62 3.1 1.9 0.07 0.17 0.1 1.05

105 0.8 0.1 59 4.12 1.6 0.04 0.25 0.1 2.15

105 0.8 0.15 57 13.6 1.4 0.01 0.34 0.1 3.31

105 0.8 0.175 56 – 1.4 ≈ 0 0.37 0.1 3.67

TABLE I. List of parameters and quantities of the two series of direct numerical simulation. The superadiabatic Rayleigh number Rasa is in

all cases an approximate value. Furthermore, we list the dissipation number D, the exponent β , the Reynolds number Re, the Nusselt numbers

NuB and NuB at the bottom and top of the layer, the superadiabaticity at the bottom and the top as well as the global value, and the ratio Rε .

Here T (z) is the conductive equilibrium profile, i.e., the heat

is transported solely by diffusion from the bottom to the top.

For a constant thermal conductivity k, we get

T (z) =−
TB −T (H)

H
z+TB . (11)

Plugged into (10) leads to (9). To conclude, in general su-

peradiabaticity is a function of depth z; for a constant thermal

conductivity however, ε(z) is a constant and equal to εglobal.

III. EQUATIONS AND SIMULATIONS

The three-dimensional equations of motion for compress-

ible convection are given by

∂tρ + ∂i(ρui) = 0 , (12a)

∂t(ρui)+ ∂ j(ρuiu j) =−∂i p+ ∂ jσi j −ρgδi,3 , (12b)

∂t(ρe)+ ∂ j(ρeu j) =−p∂iui + ∂i(k∂iT )+σi jSi j , (12c)

p = ρRT where R =Cp −Cv. (12d)

These equations correspond to mass, momentum and energy

conservation laws along with the equation of state of an ideal

gas. Quantity R denotes the gas constant. Here, ρ , ρui, p, ρe,

T are the mass density, momentum density components, pres-

sure, internal energy density, and temperature, respectively.

The viscous stress tensor depends now on temperature and is

given by

σi j = 2µ(T )Si j −
2

3
µ(T )δi j(∂kuk) (13)

with the rate of strain tensor Si j = (∂iu j + ∂ jui)/2.

We will assume a power law with respect to temperature

T for the dynamic viscosity, µ(T ) in our simulations. The

thermal conductivity k(T ) is related to the viscosity through

the Prandtl number,

k(T ) =
µ(T )Cp

Pr
. (14)

In the present work, we fix Pr = 0.7. Cp and Cv correspond

to specific heat at constant pressure and volume, respectively.

Their ratio, γ =Cp/Cv = 1.4 for a diatomic gas. The specific

internal energy is defined as e =CvT . In the next section, we

will need a different version of the energy equation (12c) for

the discussion of the turbulent heat transfer. It is based on the

temperature field T and given by

Cp∂t(ρT )+Cp∂ j(ρu jT )− ∂t p− u j∂ j p

= ∂ j(k(T )∂ jT )+σi j(T )Si j . (15)

A uniform grid is used in x– and y–directions along with

periodic boundary conditions. In wall-normal z–direction, a

non-uniform grid with a point clustering near the walls is

taken, which follows a hyperbolic tangent stretching func-

tion. Spatial derivatives are calculated by a 6th-order com-

pact scheme for all points except near the walls28,29; there 4th-

and 3rd–order compact schemes are used at the last two grid

points near the wall. No-slip, isothermal boundary conditions

are applied at the top and bottom. The boundary condition for

p is evaluated using the z-component of the momentum equa-

tion at z = 0,H, ∂ p/∂ z = ∂σiz/∂xi − ρg. The fields are ad-

vanced in time by a low storage 3rd-order Runge-Kutta with a

Courant number of CFL = 0.5. All simulations are carried out

in a Cartesian slab with quadratic cross section and an aspect

ratio of Γ = L/H = 4.

Some important parameters are summarized in table I. This

includes the global measures of turbulent heat and momentum

transfer, the Nusselt number Nu and the Reynolds number Re.

The Reynolds number Re is defined as follows,

Re =
〈ρ〉V,t〈u

2
i 〉

1/2
V,t H

〈µ(T )〉V,t
, (16)

since the dynamic viscosity will be temperature-dependent,

µ(T ). The Reynolds number for different to be introduced

later are given in Table. 1.

Also differently to ref.17, the Nusselt number Nu, which re-

lates the total heat transfer to the diffusive one, will not be
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constant across the layer. If the turbulence is in a statistically

stationary regime and the eq. (15) is averaged over the homo-

geneous horizontal directions then one obtains the following

z-dependent mean balance

Cp〈ρu jT 〉A,t −

∫ z

0
〈u j∂ j p〉A,tdz′−

∫ z

0
〈σi j(T )Si j〉A,tdz′

−

〈

k(T )
dTsa

dz

〉

A,t

= const. (17)

The last term on the left hand side of (17) is used to define the

Nusselt number at the bottom and top plates which are given

by

NuB =−
H

ε(0)TB

〈

dTsa

dz

∣

∣

∣

∣

∣

z=0

〉

A,t

(18)

and

NuT =−
k(TT )H

ε(H)k0TB

〈

dTsa

dz

∣

∣

∣

∣

∣

z=H

〉

A,t

, (19)

respectively. The details on the constant reference thermal

conductivity k0 and the height-dependent superadiabaticity

will follow now in Sec. IV. Here, the superadiabatic tempera-

ture field is given by

Tsa(x, t) = T (x, t)−Ta(z) . (20)

Equations (18) and (19) will give different magnitudes for the

present cases with variable material parameters and are listed

in Table. 1. In case of temperature-dependent thermal con-

ductivity, which we will discuss in the next section in detail,

it will be shown that the superadiabaticity for the strongest

material property variations goes to zero, ε → 0. Thus, the

Nusselt number NuB in (18) is not defined for this case. How-

ever, ε (H) is always finite and we can define NuT by (19) for

all cases. Consequently, we will use the Nusselt number at the

top NuT to quantify the turbulent heat transfer efficiency.

IV. VARIABLE THERMAL CONDUCTIVITY AND
SUPERADIABATICITY

In solar convection, the thermal conductivity follows to

k(T )∼ T 3 since heat is carried by photons to the outside. In-

spired by such a scaling behavior, we assume here that the

thermal conductivity k takes the following general form across

the convection layer,

k(T ) = k0

[

T

TB

]β

, (21a)

with the constant k0. In order to obtain a constant Prandtl

number Pr across the thermal convection layer (as already

discussed in the introduction), we assume that the dynamic

viscosity µ varies as

µ(T ) = Pr
k0

Cp

[

T

TB

]β

. (21b)

The resulting conductive temperature profile, which is a func-

tion of the vertical z–coordinate only, is given by

(

T (z)

TB

)β+1

= 1+

[

(

TT

TB

)β+1

− 1

]

z

H
. (22)

Here, TT is the temperature at the top plate, i.e., T (H). From

the general power law profile (22) the following expression

for ε (z) in eq. (10) can be derived

ε (z) =

[

T
β

B

β + 1

][

1

T
β
(z)

][

1−

(

TT

TB

)β+1
]

−D . (23)

Thus, the superadiabaticity at the bottom (z = 0) and top (z =
H) plates are given by the following relations

ε(0) =

[

1

β + 1

]

[

1− (1− εglobal−D)β+1
]

−D , (24)

ε(H) =

[

1

β + 1

][

1

1− εglobal−D

]β

×

[

1− (1− εglobal−D)β+1
]

−D . (25)

Note that the ratio of bottom to top temperature is written in

terms of global superadiabaticity, εglobal and dissipation num-

ber, D. Thus TT/TB = 1− εglobal−D.

Comparing eqns. (23)–(25), one finds that ε(z) increases

with height z for a power law with an exponent β > 0. For

constant thermal conductivity, i.e., for β = 0, the superadia-

baticity simplifies to ε(z) = εglobal everywhere. Here, we ob-

tain εglobal by averaging with respect to the depth of the layer,

εglobal =
1

H

∫ H

0
ε (z)dz . (26)

Note that the profiles are chosen such that εglobal = 0.1 for all

cases, see also table I. This guarantees the consistent compar-

ison with the runs at constant material properties which were

conducted in our previous studies.16,17

One can also estimate the degree of departure from the

global superadiabaticity across the domain by introducing the

following new parameter (which we also list in table I)

Rε =
ε (H)− ε (0)

εglobal

(27)

The global (superadiabatic) Rayleigh number is defined as fol-

lows

Rasa =
〈ρ〉2

V,tgεglobalH
3

µ (0)k (0)
. (28a)

However in general, the (superadiabatic) Rayleigh number

varies with layer depth z as

Rasa(z) =
〈ρ (z)〉2

A,tgε (z)H3

µ (z)k (z)
, (28b)

At general compressibility conditions with variable thermal

conductivity, the superadiabaticity is strong function of depth
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FIG. 1. Variation of superadiabaticity ε(z) across depth z/H as func-

tion of power law exponent β . The exponents of the correspond-

ing superadiabaticity profiles are given in the legends of both pan-

els. (a) Series for dissipation number D = 0.1 and superadiabaticty

εglobal = 0.1. (b) Series for D = 0.8 and εglobal = 0.1. In the latter

case the power law exponent could not be varied so strongly as in the

first series.

0 0.2 0.4 0.6 0.8
0

2

4

6

8

FIG. 2. The upper limit of the power law exponent β as a function of

dissipation number, D. For D = 0.8, one gets β ≤ 0.165.

as evident from Figs. 1 (a,b). For both cases, the difference

between the top and bottom increases with the exponent β .

Moreover, although εglobal = 0.1 in all simulation runs, there

are regions in the layer –particularly near the top boundary–

where ε(z)> 0.1. Here, an anelastic approximation, which re-

quires εglobal ≪ 1, may not be valid anymore. Our recent work

with constant material parameters17 showed that at Ra ≈ 106

and for very strong stratification with D & 0.65 the anelastic

approximation is definitely not valid, even for εglobal = 0.1.

In the present case, we extend these studies to stratified com-

pressible convection with variable material properties which

lead to asymmetry in superadiabaticity across the domain and

thus amplify the asymmetry between top and bottom of the

constant material parameter case even further.

This effect of an asymmetry of the superadiabaticity across

the convection layer is absent in the incompressible Oberbeck-

Boussinesq RBC case, thus our current study is also different

from the previous works which considered variable material

property effects.11,12. A quick calculation shows that under

OB conditions
(

εglobal . 10−3 and D . 10−3
)

, even with an

exponent of β = 10 would only result in ε(0) = 0.00098 and

ε(H) = 0.001. These are approximately uniform and thus

equal to εglobal. Consequently, for OB convection the Rayleigh

number is practically uniform despite strong power law be-

havior of dynamic viscosity and thermal conductivity. This

is of course due to the implicit assumption in OB convection

that (TB −TT )/TB ≪ 1. However, for fully compressible con-

vection where either ε 6≪ 1 or D 6≪ 1, the Rayleigh number

changes across the depth due to both, the variation in the den-

sity as well as the variation in the material properties, as seen

in eq. (28b).

From Figs. 1 (a,b) and eq. (24), we can infer that beyond

β = 7.5 and 0.165, the superadiabaticity at the bottom plate

becomes negative for D = 0.1 and D = 0.8, respectively. This

holds at εglobal = 0.1. Physically, a variable thermal conduc-

tivity can introduce stratification near the bottom boundary.

Thus, there is an upper limit for the exponent β for each spe-

cific dissipation number D at each εglobal = 0.1 when ε (0)= 0.

This upper limit of β is shown as a function of the dissipation

number D in Fig. 2.

In this manuscript, we will consider two series of direct

numerical simulation runs, one at D = 0.1 and a second one

at D = 0.8. For D = 0.1, we have β values between 0 to 4,

whereas for D = 0.8 they will vary from 0 to 0.175. It should

be noted that for D = 0.1, even our highest exponent β = 4.0
is well below the upper limit of 7.5 (see paragraph above) and

thus ε > 0. However, for D = 0.8, our largest exponent β =
0.175 which is close to the limit and thus ε (0)≈ 0.

V. RESULTS

A. Superadiabatic temperature profiles

One of the main effects of variable material properties is

the imposed variable superadiabaticity across the depth as we

have seen in the last section. In Fig. 3, we plot the normal-

ized mean superadiabatic temperature for D = 0.1 in panel
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FIG. 3. Superadiabatic temperature profiles obtained as averages

over the horizontal cross section and time. (a) D = 0.1 and (b)

D = 0.8. The corresponding values of β are indicated in the cor-

responding legends. The data are normalized by the total superadia-

batic temperature difference such that they are comparable.

(a) and D = 0.8 in panel (b) for various exponents β . The

quantity is defined by eq. (30) and 〈·〉A,t denotes a combined

horizontal plane-time average. Indeed, one observes in the

figure that for all the cases the bulk regions have a constant

superadiabatic temperature caused by the turbulent mixing of

the temperature field. As expected, the temperature drop at

the top boundary is greater than at the bottom boundary for

the strongly stratified case of D = 0.8 in comparison to the

weakly stratified one at D = 0.1. The stronger the degree of

stratification, the larger is the offset from the symmetric bulk

value of 〈Tsa〉A,t/∆〈Tsa〉A,t = 0.5. Here, we also observe that

this asymmetry is further enhanced when the variation of the

material properties across the layer increases. This is seen for

both series of simulation data, even though the range of acces-

sible β differs. As β increases, the bulk temperature comes

ever closer to the temperature value of the bottom boundary,

thus implying a larger drop across the top boundary.

By construction, the value of dynamic viscosity and thermal

conductivity are at the same ratio at the bottom boundary for

0 0.2 0.4 0.6 0.8 1
-8

-6

-4

-2

0

10
-3

(a)

0 0.2 0.4 0.6 0.8 1
-8

-6

-4

-2

0

10
-3(b)

FIG. 4. Variation of the normalized specific entropy S across depth z

for (a) D = 0.1 and (b) D = 0.8.

every β . Thus for D = 0.1, we observe that the temperature

profiles practically collapse near the bottom. Even though the

exponent β varies between 0 and 4, the difference between

the profiles remains moderate. The sensitivity with respect to

β is strongly enhanced for the strongly stratified case at D =
0.8; the departure of the profiles for the different exponents

β in comparison to the case of β = 0 is clearly observable,

even near the bottom boundary. As β is increased, the thermal

conductivity k also decreases near the top boundary; thus we

observe indeed thinner boundary layers for both series as β is

increased.

B. Mean specific entropy variation across the layer

The superadiabaticity is directly related to the relative

change in the entropy across the depth. The variation of the

mean specific entropy with respect to layer depth allows us to

summarize the effects of both, the height variations of supera-

diabatic mean temperature and superadiabatic mean density in

the quantitative ratio to each other. Figures 4(a,b) display the
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FIG. 5. Relative contributions from the mean superadiabatic den-

sity and temperature variations with respect to z to the variation of

the mean specific entropy. (a) D = 0.1 and (b) D = 0.8. For the

dashed lines, d〈X〉A,t/dz = (Cv/〈T 〉A,t)d〈Tsa〉A,t/dz. For the solid

lines, we have d〈X〉A,t/dz = −(R/〈ρ〉A,t)d〈ρsa〉A,t/dz where ρsa is

the superadiabatic mass density. The color coding for β in both pan-

els is exactly the same as in Fig. 4.

relative change of the mean specific entropy for both dissipa-

tion numbers, D = 0.1 and D = 0.8. A horizontal plane-time

average is calculated again. Therefore, we take the vertical

derivative of the specific entropy S which is given by

d〈S〉A,t

dz
=

[

Cv

〈T 〉A,t

d〈T 〉A,t

dz
−

R

〈ρ〉A,t

d〈ρ〉A,t

dz

]

, (29a)

and normalize by the specific entropy value at the bottom,

S(0), which is defined as

S(0) =Cv loge〈T 〉A,t(0)−R loge〈ρ〉A,t(0) . (29b)

The superadiabatic density is defined as

ρsa(x, t) = ρ(x, t)−ρa(z) . (30)

From Fig. 4(a), we obtain asymmetric profiles of the mean

specific entropy change even for the low dissipation number

0 0.2 0.4 0.6 0.8 1
-0.01

-0.005

0

0.005

0.01

0.015

0.02(a)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02
(b)

FIG. 6. Normalized (a) temperature and (b) density fluctuations for

the weakly stratified case at D = 0.1. Color coding holds for both

panels.

D = 0.1 and all β . Similar observations can be made for D =
0.8 even though the asymmetry due to the strong stratification

will dominate over that due to variable property effects. For

the high dissipation number D = 0.8, it is obvious that the

drop near the bottom boundary is negligible compared to that

near the top boundary. Overall, it is found that relative change

exists, is β -dependent, but remains small in magnitude.

From eq. (29a), it is also clear that the contribution to en-

tropy differences comes from both, the mean superadiabatic

temperature and density gradients. Thus we plot the individ-

ual contributions of temperature and density derivatives for

both D = 0.1 and D = 0.8 in Fig. 5. Note also that we con-

sider the superadiabatic part in the numerator since the adia-

batic contributions could cancel each other to give a net zero

contribution to the specific entropy gradient.

In panel (a) of Fig. 5 for D = 0.1, we find that the profiles

corresponding to vertical temperature and density derivatives

are qualitatively similar. This behavior is similar to that one

would expect in an OB approximation where both tempera-

ture and density are negatively correlated, see also (29a). The

additional variable material properties do not fundamentally
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FIG. 7. Normalized (a) temperature and (b) density fluctuations for

the strongly stratified case at D = 0.8. Color coding holds for both

panels.

change this basic correlation between density and temperature

for the case of weak stratification at D = 0.1.

In panel (b) of the same figure, we plot the contributions

from density and temperature to the vertical variation of the

mean specific entropy for D = 0.8 for all exponents β . Con-

sistent with our recent study17, a change in the behavior at

D = 0.65 is reflected here in the different signs of mean

superadiabatic temperature and density contributions. It is

seen that they are no longer negatively correlated near the

top boundary. This agrees with positive temperature–density

correlations corresponding to an anti-convective, stabilizing

behavior. The latter was reported in Panickacheril John and

Schumacher.17 In conclusion, we find that for both, small and

large dissipation number D, the basic behavior of d〈S〉A,t/dz

remains the same. This holds even for strong material prop-

erty variations. However, non-negligible and systematically

increasing changes for growing exponent β are obvious for

both series at D = 0.1 and D = 0.8.

C. Density and temperature fluctuation profiles

In RBC, the strength of the temperature fluctuations plays a

significant role for the turbulent heat transport. Exactly these

correlations are directly connected to the permanently detach-

ing plumes. Figures 6(a,b) display the plane-time averaged

profiles of the root-mean-square values of temperature and

density normalized by its own respective mean for the weakly

stratified case at D = 0.1 and for all β . Once again, we find

that the behavior and magnitude of density and temperature

fluctuations are more or less similar. The magnitude of both,

density and temperature fluctuation profiles in proximity to

the bottom wall are the same for all runs and different β . This

is because, the construction of the material dependencies for

k(T ) and µ(T ) are the same at the bottom boundary for all

cases. It will give rise to similar boundary layer thicknesses.

However, the maxima of both, density and temperature fluc-

tuations near the bottom boundary, decrease with growing β
or stronger material property variations. This can be directly

attributed to the decrease in superadiabaticity, ε(z) near the

bottom boundary which is obtained for increasing β .

For the top boundary, we observe that the boundary layer

thickness decreases with increasing β . This is consistent with

the fact that as we increase β , both dynamic viscosity and

thermal conductivity also decrease resulting in thinner bound-

ary layer thicknesses. However, despite the fact that the su-

peradiabaticity ε(z) near the top boundary increases with β ,

the maxima of both, density and temperature fluctuations, are

more or less similar in magnitude for all β cases.

Figures 7(a,b) provide the normalized temperature and den-

sity fluctuation profiles across the convection layer for all β of

the strongly stratified case at a dissipation number of D = 0.8.

As expected, under strong background stratification, the be-

havior of temperature and density is no longer qualitatively

similar and thus needs to be discussed separately now.

In panel (a) of the figure for the normalized temperature

fluctuation profiles, we observe an asymmetry between the top

and bottom boundaries due to strong stratification. The behav-

ior near the bottom boundary is similar to that of the weakly

stratified case D = 0.1. Similarly to the former case, the lo-

cal fluctuation maximum decreases with increasing β (due to

decreased superadiabaticity). The profiles are different at the

top boundary in comparison to the weakly stratified case. All

profiles collapse and lead to similar relative boundary layer

fluctuation magnitudes near the top boundary. Again, the lo-

cal maxima decrease with increasing β . This behavior seems

counter-intuitive as one expects to see increased fluctuations

with increased superadiabaticity, see further below for a dis-

cussion.

As expected in panel (b) of the same figure, the structure

of the density fluctuation profiles is very different from that

of the temperature in the high stratification case at D = 0.8.

Similar to temperature fluctuations in panel (a), the maxima

of density fluctuations at the top boundary at z = H decrease

with increasing β . The bottom boundary behavior is similar

to that of D = 0.1. This is not surprising as we expect the

strongest effects of compressibility and stratification near the

top boundary.17
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FIG. 8. Variation of the plane-time averaged turbulent Mach number

Mt with depth z for (a) D = 0.1 and (b) D = 0.8. The color legends

indicate the corresponding values of the power law exponent β .

The counter-intuitive behavior near the top boundary,

which we stated above, can be rationalized as follows. Be-

fore, let us recall that a completely different dynamics exits

here when comparing D = 0.1 and D = 0.8 at the same εglobal,

as analysed in detail in our previous study.17 For D< 0.65 nor-

malized mean density and temperature fluctuation profiles are

found to collapse; for D> 0.65 normalized mean pressure and

density fluctuation profiles are found to be close. The weak

stratification case would thus be similar to OB RBC (where

density variations depend linearly on temperature deviations),

whereas for the strong stratification case we have a different

correlation. As a consequence, slender plume structures fall

from the top boundary deep into the bulk and dominate the

heat transport.

In the convection setup which is considered here, the strati-

fication is in line with a negative background density gradient

with respect to height. A density perturbations should thus be

high enough such that this negative density gradient can be

overturned locally. Such a process results in a slender plume

emanating from the top layer. The picture also implies that

under strong stratification, there has to be a minimum level

of density fluctuations which can result in the formation of

a downward falling plume. Large superadiabaticity near the

top would however be in line with a weaker local background

stratification; thus lower-magnitude density perturbations can

already induce downward falling plumes. In other words, with

increased superadiabaticity near the top, which is caused by

an increasing exponent β , the minimum threshold of density

perturbations for triggering a local turnover of the background

density is decreased. Thus, we observe that the magnitude of

fluctuations of density and temperature decrease with β for

the high stratification case at D = 0.8.

D. Impact on the degree of compressibility

Figures 8(a,b) display the mean turbulent Mach number,

which is given by

Mt(z) =

√

〈u2
i (z)〉A,t

γR〈T (z)〉A,t
, (31)

as a function of depth z for both D. In panel (a) of the figure

we observe that variable material properties do not introduce

any significant asymmetry for the strength of compressibility

effects which is typically monitored by Mt . The asymmetry

between the top and bottom regions remains small despite the

strong background asymmetry in superadiabaticity ε(z) for

the low stratification case at D = 0.1. For the series at D = 0.8
in panel (b) of the figure, the variable material properties do

not introduce an additional asymmetry (as the profiles remain

nearly parallel to each other). However the overall strength of

the compressibilty is decreased with increasing β . This find-

ing is also consistent with the reduced thermodynamic fluctu-

ations that we observed near the top boundary before.

E. Impact on global momentum and heat transfer

Finally, we plot the relative Reynolds and Nusselt numbers

in Figs. 9 (a,b). The relative Reynolds and Nusselt numbers,

Nu∗ and Re∗, are given as the ratio of the corresponding dif-

ference between the actual value at β 6= 0 and the one at β = 0

to that at β = 0, i.e.,

Re∗ =
Re(β )−Re(0)

Re(0)
, Nu∗ =

NuT (β )−NuT (0)

NuT (0)
. (32)

From panel (a), we see that for D = 0.1, the relative Reynolds

number Re∗ increases with β . We observe a change of up to

40% for the highest exponent β = 4. This is not surprising

since the dynamic viscosity decreases with depth for increas-

ing β . However, for D = 0.8, the relative Reynolds number

shows an opposite trend and decreases with β . This can be re-

lated again to the decreased level of density fluctuations with

β near the top boundary.

In panel (b) of the same figure, we observe a different

trend for the relative Nusselt number Nuast. Despite an in-

crease of Re∗, the relative Nusselt number remains close to
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zero for growing β at D = 0.1. This implies that the tur-

bulent heat transfer efficiency remains the same even under

strong variation in thermal conductivity. For the second series

at D = 0.8, the relative Nusselt number is found to decrease

with β . Under strong stratification conditions, the heat trans-

port efficiency is further decreased due to variable material

properties, here by up to 50%. In the SSC regime, the major

heat transport events are the slender plumes which fall from

the top boundary, as already mentioned. Once again, the de-

creased Nusselt number with β seems to correspond to the

reduced thermodynamic fluctuations near the top boundary.

VI. SUMMARY AND OUTLOOK

The major motivation of the present study was to extend

our previous analysis of compressible turbulent convection

with constant material properties in refs.16,17 to the case with

temperature-dependent ones. This leads to non-Boussinesq

effects from two combined sources and thus to deviations

from the Oberbeck-Boussinesq Rayleigh-Bénard convection

(OB RBC) case: (1) from genuine compressibility and (2)

from varying material properties. The latter source was mod-

eled by a power law dependence on the temperature T with a

power law exponent β . We omitted the weaker dependence on

pressure p. Our present work also extends former numerical

studies of a temperature-dependent temperature diffusivity in

the Boussinesq approximation by Pandey et al.11,12.

Two series of direct numerical simulations were analysed

which were obtained at the same Rayleigh and Prandtl num-

bers, Ra= 105 and Pr = 0.7, but for different dissipation num-

bers D, a weakly stratified case at D = 0.1 and a strongly

stratified case at D = 0.8. They were denoted as the OB and

SSC regimes in our previous study.16 The exponents of the

corresponding power laws for the thermal conductivity k(T )
and the dynamic viscosity µ(T ) could be varied over certain

ranges; the larger β the stronger the variability of the material

parameter in the layer. The same holds for the superadiabatic-

ity ε(z). The dependence on temperature was chosen such that

the mean value of the superadiabaticity remained on average

at εglobal = 0.1 throughout this study.

Our results can be summarized as follows. The mean su-

peradiabatic temperature profiles become increasingly asym-

metric with increasing β . The variation of the specific entropy

with height (normalized to the entropy value at the bottom)

shows a systematic although weak dependence on β . The

trends close to the top and bottom are however opposite for

the SSC regime in comparison to the OB-like regime. It can

be traced back to the different couplings of the fluctuations of

the thermodynamic state variables, density to temperature for

weak and density to pressure for strong stratification, respec-

tively.

We also detected a β –dependence for the temperature and

density fluctuation profiles, however not a qualitative change

of the profiles. The profile of the turbulent Mach number re-

mains nearly unchanged for the weak stratification cases. The

degree of compressibility is reduced across the whole layer

when β is enhanced for the SSC case at D = 0.8. The turbu-
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FIG. 9. Relative Reynolds (a) and Nusselt numbers (b), Re∗ and

Nuast, with respect to the power law exponent β . The legend indi-

cates the corresponding dissipation number D.

lent momentum transfer is strongly enhanced for D = 0.1 and

only weakly for D = 0.8. The turbulent heat transfer remains

nearly insensitive for D = 0.1 and decreases significantly at

D = 0.8 for growing β . Overall it can thus be stated that β –

dependencies are present for all quantities that we studied; the

sensitivity is particularly pronounced for the global momen-

tum and heat transfer. It depends strongly on the degree of

stratification which we determine by the dissipation number

D. We can conclude from our analysis, that the additional

inclusion of the temperature dependence of the thermal con-

ductivity and the dynamic viscosity leads to quantitative, but

not qualitative changes of the convection dynamics.

Even though, the present analysis was already very compre-

hensive, we could show results for one Rayleigh number only.

It can be expected that the complexity of parameter depen-

dencies is further increased when a variation of the Rayleigh

number is incorporated. Furthermore, we varied both mate-

rial parameters such that the Prandtl number remains constant.

If we would give up this constraint, new convection regime

changes can be expected. These two aspects define possible

directions for the future research on this subject.
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